Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission
نویسندگان
چکیده
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.
منابع مشابه
Broadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach
While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...
متن کاملA Full-Duplex, Dual-Polarization 10Gbps Radio over Fiber system with wavelength reuse for upstream signal
This study presents a full-duplex Radio-over-Fiber (RoF) system providing the users' wireless access with a bit rate of 10 Gbps over 40 GHz radio carrier. This system can be used in a centralized radio access network (C-RAN) architecture because we provide a fully analog front haul link between central station and base station. We can consider it as infrastructure between remote radio heads (RR...
متن کاملBiofuel Cell Based on Microscale Nanostructured Electrodes with Inductive Coupling to Rat Brain Neurons
Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale...
متن کاملA New Unequal Error Protection Technique Based on the Mutual Information of the MPEG-4 Video Frames over Wireless Networks
The performance of video transmission over wireless channels is limited by the channel noise. Thus many error resilience tools have been incorporated into the MPEG-4 video compression method. In addition to these tools, the unequal error protection (UEP) technique has been proposed to protect the different parts in an MPEG-4 video packet with different channel coding rates based on the rate...
متن کاملA Self-Adaptive Sleep/Wake-up Scheduling Approach for Wireless Sensor Networks - Supplementary Material
On-demand wake-up approaches typically require two channels: a data channel and a wake-up channel for waking nodes when needed. This allows for the immediate transmission of a signal on the wake-up channel, if a packet transmission is needed on the data channel. Thus, the wake-up latency can be reduced. The drawback is the additional cost for the second radio. In [2], Gu and Stankovic present a...
متن کامل